Toxicokinetics of Inhaled Nanoparticles

Otto Creutzenberg

Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany

© Fraunhofer

Toxicokinetics of Inhaled Nanoparticles

Deposition – Dissolution – Translocation

- Metal oxides: nano-TiO₂, nano-ZnO, nano-SiO₂
- Recent study on: Carbon black

© Fraunhofer

BAuA-funded Project: 28-Day Inhalation Toxicity Study with 3 TiO₂ Varieties (NM-103, NM-104, NM-105)

Objectives

- To mimic an occupational exposure scenario (dry dispersion technique)
- Study on disintegration of agglomerates (TEM analysis)
- Identification of the respiratory cell types responsible for uptake of these particles

© Fraunhofer

Exemplary pictures of transmission electron microscopy

Titanium particles (NM-103) within an intraalveolar macrophage

High magnification of titanium particles (NM-104) within a macrophage

© Fraunhofer

Exemplary pictures of transmission electron microscopy

Titanium particles (NM-103) attached to intraalveolar surfactant

Titanium particle (NM-105) attached to intraalveolar surfactant

© Fraunhofer

Summary

- Retained particle mass
 - \rightarrow Retention analysis data matched the values predicted by MPPD model.
 - \rightarrow The translocation potential from lungs was very small.
 - → Solubility of test items is limited by a given maximum under the the conditions of the lung ambience (5.5%, 2.2% and 0.9% in the low/mid/high dose groups, resp.)

• TEM

→ Intraalveolar MPh are the most prominent compartment of particle detection (secondary: Pneumocytes type I / free particles).

© Fraunhofer

Biokinetics of nano-ZnO (NM-111) and nano-SiO₂ (NM-200) after Inhalation in Rats

© Fraunhofer

90-Day Study: Absolute Zn content in organs, blood, urine and feces

NM-111: ZnO coated with triethoxycaprylylsilane (2%)

Day 1 post-exposure

	Clean air		Z-Cote® HP1		Z-Cote® HP1		Z-Cote® HP1		microscaled ZnO	
	control		0.3 mg/m ³		1.5 mg/m ³		4.5 mg/m ³		4.5 mg/m ³	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Day 1 postex	(µg/Organ)		(µg/Organ)		(µg/Organ)		(µg/Organ)		(µg/Organ)	
LALN	2.60	1.55	2.86	0.78	2.01	0.40	2.53	0.70	2.98	1.68
MSLN	2.62	0.77	3.52	0.60	2.72	1.79	2.20	0.52	4.43	2.74
Brain	23.2	0.9	22.9	0.7	21.4	1.3	21.4	1.4	*20.8	1.4
Kidneys	58.1	3.5	56.2	5.4	*49.4	3.4	*49.5	4.1	51.7	6.7
Liver	276	19	320	29	287	27	287	20	302	80
Lung	19.9	0.2	20.4	0.6	22.2	2.0	**35.8	1.7	22.4	1.9
Blood	327	37	278	15	291	17	368	15	355	61
	(µg/16h)		(µg/16h)		(µg/16h)		(µg/16h)		(µg/16h)	
Urine	2.90	1.91	5.68	5.04	3.63	1.92	2.40	0.72	4.46	1.84
Feces	565	185	472	111	466	259	673	104	475	210

© Fraunhofer

90-Day Inhalation Test + 1-mth recovery

Name NM	Mass balance / Recovery Bioavailability	Biodistribution Tissue levels	C,t- curve(s) T1/2, ke	Variation	
NM-111	Deposited test items were eliminated within 1-mth post- exposure period	Lungs: approx. 2% of deposited mass after end of exposure; Tissue levels not increased	T _{1/2} < 1 wk	1 wk -	
µ-ZnO		Lung and tissue levels not increased	T _{1/2} <1 day	-	

NM-111: Coated triethoxycaprylylsilane (2%)

© Fraunhofer

14- and 90-Day Study: Summary ZnO

Zn chemical analysis:

Detectable only at day 1 post-exposure; statistically significant in lungs for NM-111

Not longer increased at day 14 or day 29 post-exposure

ZnO particles in tissues not detectable by TEM

© Fraunhofer

14-Day Study: Summary SiO₂ (NM-200)

 \rightarrow precipitated synthetic amorphous silica

Toxicokinetics

- Si analysis: Detectable only in lungs Day 1 and 14 post-exposure
- SiO₂ particles detectable in lungs/LALN up to 14 day post exposure

- not detectable in remote organs by TEM

© Fraunhofer

90-Day Study: Summary SiO₂ (NM-200)

→ precipitated synthetic amorphous silica

Toxicokinetics

- Si analysis: Detectable only in lungs Day 1, 29 and 91 postexposure
- SiO₂ particles detectable in lungs/LALN up to 91 day post exposure

- not detectable in remote organs by TEM

(nasal epithelium, trachea, larynx, liver, spleen, kidney and mesenteric lymph node)

© Fraunhofer

Toxicokinetic Study on Carbon black

© Fraunhofer

Objectives

- To perform a study for regulatory purposes
- To compare two high-volume grades of carbon black, without and with surface functionalization (oxidized)
- To assess the translocation of carbon black nanoparticles beyond the target organs lung (and GI tract/oral gavage).

© Fraunhofer

Test items

	⁷ Be-tagged Monarch [®] 1000	⁷ Be-tagged Printex [®] 90
Name Trade name Purity Specific surface	Carbon black, amorphous Monarch [®] 1000 (Cabot) 100% 340	Carbon black, amorphous Printex [®] 90 (Orion) 100% 230
(m-/g) CAS number Surface functionalization	1333-86-4 Yes; oxidized	1333-86-4 No

© Fraunhofer

Preparation of ⁷**Be-tagged carbon black**

- Direct irradiation of carbon black (Abbas et al., 2013; Bäcker et al., 2019)
- Proton irradiation \rightarrow ⁷Be radioisotope is produced directly in the crystal lattice of carbon

Nuclear reaction: natC(p,x)⁷Be, mainly via ¹²C(p,3p3n)⁷Be channels; Proton energy range 24-38 MeV; ZAG Zyklotron, Karlsruhe, Germany

- Spallation process: ⁷Be $\rightarrow \gamma$ tracer; half-time = 53 days
- Approx. 20 mg of carbon black were filled into an aluminium capsule and the cavity sealed with a screwed cap.

© Fraunhofer

Purification of 7Be-tagged carbon black

- Purification of the test item liberation from soluble or loosely attached moieties
- Triplicate of solvents: EtOH/H₂O 1/1 v/v 0.01 N HCI Artificial lysosomal fluid - ALF) (*LeFevre & Joel, 1986;* Abbas et al., 2013)
- An aqueous suspension of approx. 0.3 mg of the ⁷Be-carbon black sample in a syringe was suspended in water and the carbon black separated by pressing through a filter (pore size: 0.4 µm; Swinnex[®] Filtration System CAT # SX0001300, EMD Millipore).

© Fraunhofer

Intratracheal instillation and oral gavage

Lungs

- Single intratracheal instillation of approx. 0.3 mg carbon black suspended in 0.3 ml of sterile isotonic saline
- Dose below lung overload levels does not compromise the physiological ADME capability
- Instillation was preferred to inhalation as only limited amounts of radiolabeled test items were available

Stomach

• 0.3 mg carbon black in 1.5 ml tap water

© Fraunhofer

Toxicokinetic Study on Carbon black

Monarch® 1000 – following IT instillation

© Fraunhofer

Toxicokinetic Study on Carbon black

Printex® 90 – following IT instillation

MEAN DISTRIBUTION OF PRINTEX 90 POST INSTILLATION

© Fraunhofer

Conclusion

Fate of carbon black agglomerates after deposition

- Carbon black test items act as insoluble microscaled agglomerates (not as individual nanoparticles)
- No evidence for translocation of the test items beyond the lung or the GI tract into the blood or other body compartments (very small amounts only in LALN)

© Fraunhofer

Conclusion

Fate of carbon black agglomerates after deposition

- Following an exhaustive bronchoalveolar lavage (BAL) and centrifugation separate γ activity analysis:
 - Total of radioactivity detected in leukocyte sediment
 - Cell-free supernatant showed no radioactivity

© Fraunhofer

Toxicokinetic Study on Carbon black

Monarch® 1000 – following oral gavage

DISTRIBUTION OF MONARCH 1000 POST-TREATMENT

© Fraunhofer

Toxicokinetic Study on Carbon black

Printex[®] 90 – following oral gavage

DISTRIBUTION OF PRINTEX® 90 POST-TREATMENT

Particles & Health, London, 21-Oct-2021

© Fraunhofer

Summary

In occupational inhalation exposure scenarios:

- Nanoparticles form agglomerates

 → Deposition and translocation behaviour as observed for microscaled particles
- Particles do not translocate to remote organs
 Dissolved materials are the active agent in remote organs

Acknowledgement This study was funded by the International Carbon Black Association (ICBA)

© Fraunhofer

Thank you for your attention

© Fraunhofer

