

Carcinogenicity of PSLT Particles: Epidemiology as a Risk Assessment 'Reality Check'

Kenneth A. Mundt, PhD, FACE William J. Thompson, MS; Annette Santamaria, PhD, MPH, DABT; Christopher A. Bates PhD, DABT; Corey Boles PhD; and G. Scott Dotson, PhD, CIH, DABT

Cardno ChemRisk

- > US-based consulting firm of 100 scientists specializing in human health risk evaluation
- > Engage teams with diverse expertise in toxicology, exposure sciences, risk assessment and epidemiology to evaluate and integrate scientific evidence
- > Apply practical, state-of-the-art scientific methods to understand human health and risk for regulatory, policy, litigation and other decision-making processes
- > Legacy of active participation in scientific organizations and publishing scientific papers in peer-reviewed journals

www.cardnochemrisk.com

Poorly Soluble Low Toxicity Particles: Presentation Outline

- 1. Do poorly soluble low toxicity particles (PSLTs) cause lung cancer?
- 2. Occupational exposure to PSLTs is common and may be substantial
- 3. Hazard, Exposure, Risk Assessment and Epidemiology
- 4. Epidemiological studies of workers highly exposed to PSLTs: A 'reality check'?
- 5. The Balancing Act:
 - Biological plausibility
 - Quality based study evaluation
 - Human-relevant exposures
 - Evidence Integration

1 Do poorly soluble low toxicity particles (PSLTs) cause lung cancer?

What are Poorly Soluble Low Toxicity (PSLT) Particles?

- > Poorly Soluble, Low Toxicity particles (PSLTs) have been inconsistently characterized
 - Generally are chemically inert
 - Lack of known specific toxicity
 - Macrophage clearance from lungs is quicker than their dissolution (ETETOC 2013)
- > Particle size (<200 nm), dimensions (aspect ratio >3:1), surface chemistry / surface-reactivity* and dose can affect toxicity

*Freshly fractionated crystalline silica exhibits surface-related cytotoxicity that diminishes with time

SOURCE: <u>https://www.ecetoc.org/report2/introduction/definition-of-poorly-soluble-particles-of-low-toxicity/</u>

Examples I: Evidence of Carcinogenic Potential (Hazard)

> Carbon Black

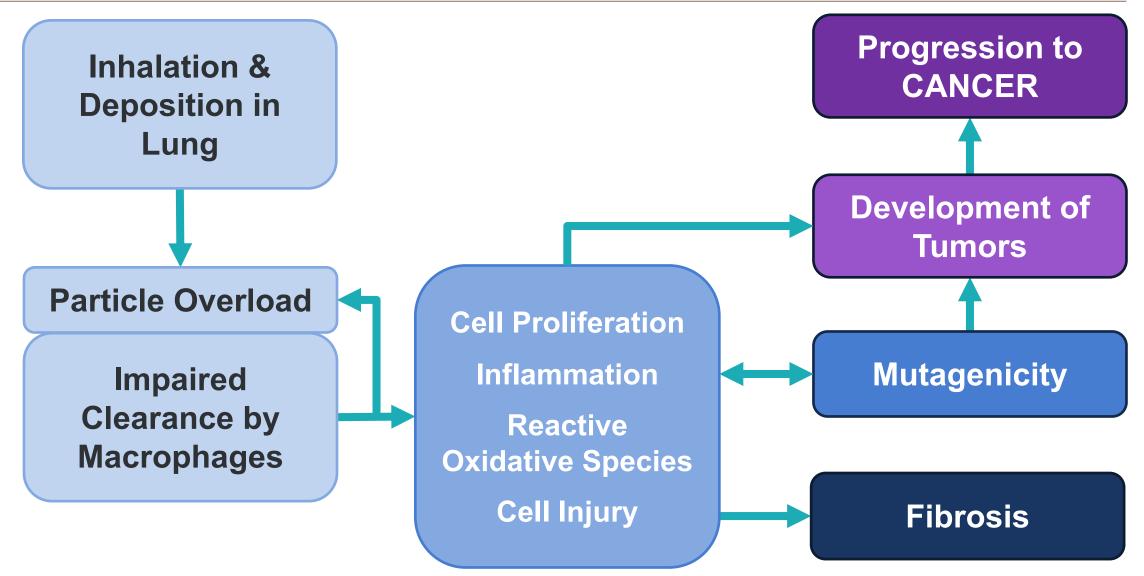
- IARC Classification Group 2B "possibly carcinogenic to humans" (minority supported 2A – "probable")
- Sufficient evidence in animals
- <u>Inadequate</u> evidence in humans
- > Talc (via inhalation)
 - IARC Classification of Group 3 "unclassifiable"
 - <u>Limited</u> evidence in animals (one positive study)
 - <u>Inadequate</u> evidence in humans (limited for perineal)

Examples II: Evidence of Carcinogenic Potential (Hazard)

> Taconite (elongate mineral particles – EMPs)

- Not classified by IARC
- "Taconite workers may have an increased risk for certain cancers. Lifestyle and work-related factors may play a role in elevated morbidity." University of Minnesota series of studies *

> Crystalline Silica Dust (Quartz or Cristobalite)


- IARC Classification of Group 1 (carcinogenic to humans)
- Sufficient evidence in animals
- Sufficient evidence in humans
- Technically not a PSLT

*SOURCE: Allen EM, Alexander BH, MacLehose RF, Nelson HH, Ramachandran G, Mandel JH. Cancer incidence among Minnesota taconite mining industry workers. Ann Epidemiol. 2015 Nov;25(11):811-5.

A Proposed Mechanism of Action in Rat Models

⁷ Adapted from IARC Vol. 93 (2010), p. 167, Figure 4.2 (Carbon Black)

Animal Evidence of Carcinogenicity of PSLT Particles (Hazard)

- > Several chronic inhalation studies of PSLT (e.g. carbon black, TiO₂, and talc) demonstrated lung cancer, but only at "lung particle overload" doses in rats
- > Mechanism of Action (MOA): Chronic lung inflammation
 - MOA could to be relevant to humans. . .
 - But same effects not observed in other animal species
- > Many epidemiological studies fail to demonstrate associations between PSLT particles and risk of lung cancer

How do we address interspecies (including rat to human) extrapolation?

2 Occupational exposure to PSLTs is common and may be substantial

PSLT Particle Exposure in the Workplace

- > Exposure to 'dusts' in the workplace especially 'nuisance dusts' remains common
- > Exposure to PSLT particles occurs across many industrial sectors:
 - Mineral mining, milling, preparation
 - Welding, asphalt and other fume/dusts
 - Manufacturing of textiles, glassware, roofing, pulp and paper products, etc.
 - Nanomaterial manufacturing and use (e.g., gold, copper, titanium dioxide)
- > PSLT particle exposures may impact millions of workers globally

SOURCE: <u>https://golchaminerals.com/pure-</u> white-talc-at-dagota-ug-face/

PSLT particle exposure assessment is critical to risk evaluation

- > Sampling/monitoring instrumentation for PSLTs has improved but is not perfect
 - Current debate regarding PSLT mass fraction, surface area and diameter characteristics
 - Lack of standard sampling methods for nanoparticles
 - Direct reading instruments (DRIs) allow for sensitivity, but lack specificity
- > Establishing OELs for PSLTs and especially nanoparticles must consider feasibility
- > Uncertainties in measurement need to be described, reduced
- > Valid exposure assessment is the Achilles' Heel of epidemiology!
- > Epidemiological studies can reflect real-world exposures, but poor characterization will affect quantitative risk estimates

Hazard, Exposure,
Risk Assessment – and
Epidemiology

Human Health Risk Assessment

- > Human Health Risk Assessment quantifies the effects of a hazard by unit of exposure
- > For some PSLT particles, hazard classification based only on animal evidence
 - Associated with overloading rat lungs
 - Leads to chronic inflammation \rightarrow cell proliferation \rightarrow oxidative stress
- > Occupational exposures to PSLTs are common and can be measured/estimated
- > Risk assessment, therefore, is possible
- > Cancer risk assessment, however
 - Classically employs linear no-threshold (LNT) models
 - Unit risk applies to all non-zero exposures
- > Risk assessment results sometimes conflict with epidemiological evidence

US CDC: Epidemiology is the Preferred Basis if Risk Evaluation

- > "Epidemiology is often described as the basic science of public health, and for good reason:
 - quantitative discipline that relies on a working knowledge of probability, statistics, and sound research methods.
 - a method of causal reasoning based on developing and testing hypotheses grounded in such scientific fields as biology, behavioral sciences, physics, and ergonomics to explain health-related behaviors, states, and events...
 - an **integral component of public health**, providing the foundation for directing practical and appropriate public health action. . ." (CDC)

Epidemiological evidence demonstrates the human health risks of PSLTs <u>under the</u> <u>"natural" circumstances of use and exposure</u>, i.e., "human-relevant exposure"

SOURCE: US CDC https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section1.html

Epidemiology and Human Health Risk Assessment for PLSTs

- > Quantitative risk assessment *can* be based on epidemiological study results, however:
 - Exposure must be quantified
 - Risk quantitatively estimated by exposure level(s)

Key questions:

- > What if epidemiological studies are lacking?
- > What if epidemiological studies demonstrate no increased risk?
- > Many risk assessments are based on animal data only (with interspecies extrapolation)
- > Does the risk assessment accurately address risk at human-relevant exposures?

Epidemiology's Weaknesses

- > Many occupational cohort studies of PSLTs lack robust exposure assessment
- > Workplaces with PSLTs exposures often have other hazardous exposures
- > PSLT heavy exposure may produce non-cancer effects including lung epithelial cell injury and fibrosis (with or without lung cancer)
- > Systematic reviews and meta-analyses may not consider individual study quality

Nevertheless, there are many good occupational epidemiological studies of workers heavily exposed to PSLT particles...

Epidemiological studies of workers highly exposed to PSLTs:

A 'reality check'?

4

Epidemiological Study of PSLT Particles: US Carbon Black Workers

- > Cohort mortality study of 6,634 US Carbon Black workers from 18 facilities
- > Job Exposure Matrix created using over 8,000 time-weighted average measurements
- > Vital status traced for 98.5% of the full cohort
- > Lung cancer mortality analyzed by various exposure indicators

US Carbon Black Workers Study: SMRs by Exposure Surrogates

Exposure Surrogate	Full Cohort: 6634 Carbon Black Workers				
	Observed	Expected	SMR (95% CI)		
Length of employment, yrs					
1-4	63	74.9	0.84 (0.65-1.08)		
5-9	28	35.3	0.79 (0.53-1.15)		
10-19	32	40.6	0.79 (0.54-1.11)		
≥ 20	61	87.0	0.70 (0.54-0.90)		
Time since first exposure, yrs					
<10	4	6.3	0.63 (0.17-1.62)		
10-19	6	20.1	0.30 (0.11-0.65)		
20-29	34	45.5	0.75 (0.52-1.04)		
≥ 30	140	165.9	0.84 (0.71-1.00)		
Time since cessation of exposure, yrs					
0 to <1	10	33.8	0.30 (0.14-0.54)		
1-4	21	18.1	1.16 (0.72-1.78)		
5-14	37	50.4	0.73 (0.52-1.01)		
≥15	116	135.7	0.85 (0.71-1.02)		

SOURCE: Dell LD, et al. Cohort Study of Carbon Black Exposure and Risk of Malignant and Nonmalignant Respiratory Disease Mortality in the US Carbon Black Industry. J Occup Environ Med. 2015 Sep; 57(9):984-97.

Epidemiology Studies of PSLT Particles – Talc Miners and Millers

- > 5 cohorts conducted in multiple locations (4,178 workers in 5 countries)
- > High historical exposures to talc
 - Large excess of non-malignant respiratory disease (primarily silicosis) mortality
 - No excess of mesothelioma demonstrated (1 mesothelioma death)
 - No excess of lung cancer demonstrated (166 lung cancer deaths)
- > Italian cohort study (Ciocan et al. 2021) update just published
 - 1184 miners and 565 millers employed 1946–1995 and followed 1946–2020
 - No asbestos has been detected

Lung cancer results in cosmetic talc miners and millers

Study	Period, Location	Cohort Size	Lung Cancers	Lung Cancer SMR (95% CI)
Fordyce et al. (2019)	1940-2012 (Vermont)	427	32	1.44 (0.98-2.03)
Wild et al. (2002)	1945-1996 (France)	1070	21	1.23 (0.76-1.89)
Wild et al. (2002)	1973-1995 (Austria)	542	7	1.06 (0.43-2.19)
Ciocan et al. (2021)	1946-2020 (Italy)	1749	85	1.02 (0.82-1.27)
Wergeland et al. (2017)	1953-2011 (Norway)	390	21	1.17 (0.73-1.79)
TOTAL	60+ years	4,178	166	1.13 (0.97-1.31)

SOURCE: Adapted from Boffetta P, Mundt KA, Thompson WJ. The epidemiologic evidence for elongate mineral particle (EMP)-related human cancer risk. Toxicol Appl Pharmacol. 2018 Dec 15;361:100-106.

21

Ciocan et al. (2021) – Update of Val Chisone talc miners and millers

Table 3

Standardized mortality ratio for selected causes stratified by duration of employment.

Cause of deaths	Duration of employment						
	<15 years		15–24 years		25+ years		
	Obs	SMR (95 % CI)	Obs	SMR (95 % CI)	Obs	SMR (95 % CI)	
All causes	430	1.27 (1.15–1.40)	331	1.21 (1.08–1.35)	413	1.15 (1.05–1.27)	
All cancers	116	1.06 (0.88-1.28)	72	0.91 (0.71-1.15)	116	1.01 (0.83-1.21)	
Oral & pharyngeal cancer	15	4.44 (2.48-7.32)	6	2.42 (0.89-5.27)	13	3.76 (2.00-6.44)	
Esophageal cancer	8	3.14 (1.35-6.18)	4	2.04 (0.55-5.21)	2	0.72 (0.09-2.59)	
Lung cancer	31	1.03 (0.70–1.46)	18	0.87 (0.52-1.38)	36	1.12 (0.78–1.55)	
Ischemic heart disease	41	0.89 (0.64–1.21)	28	0.69 (0.46-1.00)	36	0.69 (0.48-0.96)	
Cerebrovascular disease	25	0.77 (0.50-1.14)	15	0.47 (0.26-0.78)	34	0.84 (0.58-1.17)	
Non-neoplastic respiratory diseases	42	1.79 (1.29-2.42)	47	2.19 (1.61-2.91)	63	2.29 (1.76-2.92)	
Pneumoconiosis	11	4.19 (2.09–7.50)	16	8.78 (5.02–14.3)	42	15.1 (10.9–20.4)	
Liver cirrhosis	22	1.75 (1.10-2.65)	28	2.70 (1.79-3.90)	18	1.37 (0.81-2.17)	

SOURCE: Ciocan C, et al. Mortality in the cohort of talc miners and millers from Val Chisone, Northern Italy: 74 years of follow-up. Environ Res 2021; 203:111865.

Epidemiology Studies of PSLT Particles – Taconite

- > Iron ore hematite and taconite mined in Minnesota (US) since the 1890s
- > Taconite elongate mineral particles (EMPs) of concern for carcinogenicity
- > Cancer surveillance indicated increased lung cancer and mesothelioma in taconite workers
- > Six publications on taconite miners identified (including cohort expansion and updates)
- > Statistically significantly increased SMR for lung cancer among taconite miners reported in one study (Allen et al. 2014)
- Case-control evaluation identified no association with Taconite EMP exposure indicators (Allen et al. 2015b)

Source: Dell LD et al. Integration of Evidence on Community Cancer Risks from Elongate Mineral Particles in Silver Bay, Minnesota. Risk Anal. 2021 Sep;41(9):1674-1692.

Lung cancer results for taconite workers

Study	Period	Cohort Size	Lung Cancers	Lung Cancer SMR or OR (95% CI)		
Higgins et al. (1983)	1952-1976	5,751	15	0.84 (0.47-1.38)		
Cooper et al. (1988, 1992)	1959-1988	3,444	62	0.87 (0.52-0.86)		
Allen et al. (2014)	1960-2010	31,067	949	1.16 (1.09-1.24)		
Allen et al. (2015a)	1988-2010	40,720	973	1.1 (1.0-1.3)		
Allen et al. (2015b)	1960-2010	N/A	1,706	Hematite only 0.13 to <0.45 EMP/cm ³ -yrs 0.45 to <2.35 EMP/cm ³ -yrs >2.35 EMP/cm ³ -yrs	0.81 (0.67-0.98) 1.0 (0.79-1.25) 0.98 (0.77-1.24) 0.82 (0.57-1.19)	

SOURCE: Dell LD, Gallagher AE, Yost LJ, Mundt KA. Integration of Evidence on Community Cancer Risks from Elongate Mineral Particles in Silver Bay, Minnesota. Risk

24 Anal. 2021 Sep;41(9):1674-1692.

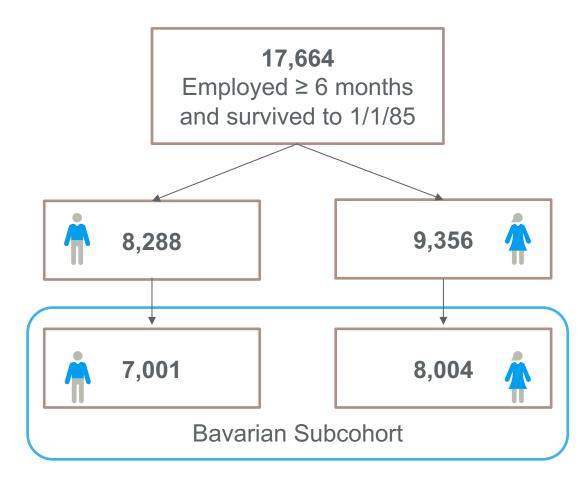
Epidemiology Studies of PSLT Particles – Silica and Lung Cancer

- > Shahbazi et al. (2021) meta-analysis of 19 studies
- > Reported "a positive and significant increasing dose-response trend between silica exposure and the risk of developing lung cancer"

Silica Exposure	Lung Cancer Meta-RR
< 0.50 mg/m ³	1.14 (95% CI: 1.05-1.23; I ² = 79%
0.50-0.99 mg/m ³	1.34 (95% CI: 1.05-1.71; I ² = 45%)
1.00-1.99 mg/m ³	1.14 (95% CI: 1.00-1.30; I ² = 70%)
2.00-2.99 mg/m ³	1.47 (95% CI: 1.05-2.06; I ² = 57%)
3.00-3.99 mg/m ³	1.44 (95% CI: 0.99-2.11; I ² = 58%)
≥ 4.00 mg/m ³	1.64 (95% CI: 1.20-2.24; I ² = 88%)

> Only 6 studies had a high NOS score, but all 19 were included in the meta-analysis

SOURCE: Shahbazi F, Morsali M, Poorolajal J. The effect of silica exposure on the risk of lung cancer: A dose-response meta-analysis. Cancer Epidemiol. 2021 Sep 22;75:1020-24



Shahbazi et al. (2021) meta-analysis <u>excluded</u> one large study!

Mundt KA et al. Respirable Crystalline Silica Exposure–Response Evaluation of Silicosis Morbidity and Lung Cancer Mortality in the German Porcelain Industry Cohort. JOEM 2011;53(3):282-9.

- About 100 plants (Western Germany)
- Participated in a medical surveillance and x-ray program for silicosis started in the early 1980's
- Followed through 2005
- Bavarian Subcohort as focus group
- Identified 74 lung cancer deaths among men and 20 among women

Update thorough 2020 underway!

Crystalline Silica and Lung Cancer: Exposure-Response

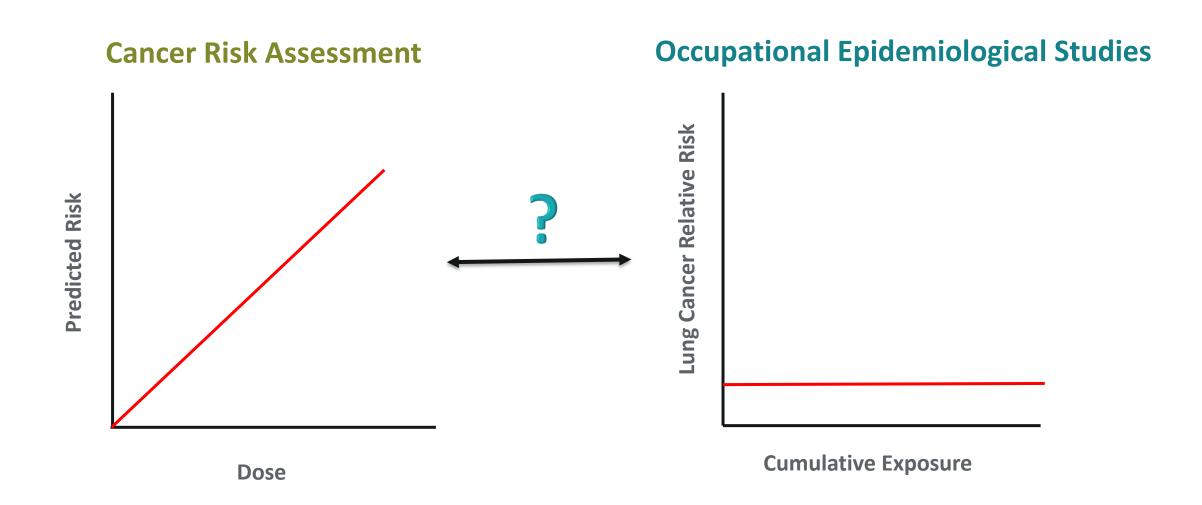
TABLE 2. Lung Cancer Hazards Ratios (HRs) and 95% Confidence Intervals (95% CI) by Categories of Cumulative Exposure (mg/m³-years), Average Exposure (mg/m³), Duration of Employment (years), and Smoking, Stratified by Sex and Controlling for Age and Smoking

HR (95% CD)

	n†	Male	n†	Female	
Cumulative exposure					
<u>≤</u> 0.5	19	Reference	1	Reference	
>0.5-1.0	5	0.3 (0.1-0.9)	7	7.8 (1.0-63.2)	
>1.0-1.5	5	0.4 (0.1–1.1)	3	4.2 (0.4-40.4)	
>1.5-3.0	16	0.6 (0.3-1.2)	3	2.2 (0.2-21.8)	
>3.0	29	0.5 (0.3-1.0)	6	3.2 (0.4–27.6)	
<u><</u> 3	45	Reference	14	Reference	
>3-4	5	1.0 (0.4–2.4)	3	1.9 (0.5-6.6)	
>4-5	3	0.7 (0.2-2.3)	1	0.7 (0.1–5.4)	
>5-6	5	1.1 (0.5-2.9)	1	0.8 (0.1-6.1)	
>6	16	0.8 (0.5-1.5)	1	0.4 (0.1–3.4)	

SOURCE: Mundt KA et al. Respirable Crystalline Silica Exposure–Response Evaluation of Silicosis Morbidity and Lung Cancer Mortality in the German Porcelain Industry Cohort. JOEM 2011;53(3):282-9.

28


The Balancing Act: 5 **Biological plausibility** Quality based study evaluation Human relevant exposures **Evidence Integration**

Epidemiology Studies – Risk Evaluation

- > A causal relationship between PSLTs and lung cancer in humans must consider
 - Biological plausibility
 - Quality of exposure measurement / estimation in epidemiological studies
 - Risk estimates by specific level of exposure (exposure-response analyses)
 - Potential role of confounding causes (especially tobacco smoking and radon)
- > The epidemiological evidence for PSLTs (e.g., carbon black, talc, taconite) and lung cancer:
 - Consistently does **not** demonstrate elevated risks related to exposure
 - Suggests no compelling exposure-response relationships
 - Though biologically plausible, does not support PSLTs as causing lung cancer at human-relevant exposures
 - Raises questions about relevance of rat studies with particle-overload exposure conditions

Where Evidence Conflicts, the Gap may be Larger

Risk Assessment

- Possibly based on very high doses
- Generally predicted risk
- Based on unit risk (UR, IUR), i.e., increased rate per unit of exposure
- Linear, no threshold (LNT) default assumption

Other limitations

Species selection, incomplete MOA, etc.

Epidemiological Studies

- Possibly based on 'low' exposure
- Generally observed risk
- Based on observed risk compared with <u>referent</u> (assumed background) risk
- Exposure-response function not necessarily 'forced' into LNT

Other limitations

 Statistical power, study bias, confounding, etc.

Closing Comments

- 1. Some PSLTs probably do cause lung cancer (at least in rats)
- 2. PSLT exposure may be **poorly characterized** (e.g., nano); however, **epidemiological studies address real-world exposures**
- 3. Human Health Risk Evaluation is improved when evidence from toxicology, mechanistic studies and epidemiological studies is **integrated**
- 4. Epidemiological studies of workers highly exposed to PSLTs may provide **the 'reality check'** needed for science-based decision-making in regulatory, policy and litigation arenas.

Thank you

