

Can We Reduce Animal Testing? A Tiered Approach Based on In Vitro Screening

Martin Wiemann

IBE R&D Institute for Lung Health gGmbH (Münster, Germany)

martin.wiemann@ibe-ms.de

Overlay

Alveolar macrophages take up the majority of nanoparticles in the lung: colloidal amorphous silica (15 nm)

Alveolar macrophages are among the first cells to take up and concentrate inhaled NP

For AIOOH a cell burden of up to 90 pg/cell was found (Pauluhn et al. Toxicol. Sci. 2009)

Effects of (nano) particles on alveolar macrophages in vitro

General cytotoxicity: LDH Assay

Lysosomal damage, activation, release of lytic enzymes: Glucuronidase Assay **(GLU)**

ROS formation, oxidative burst: Amplex Red Assay (**H**₂**O**₂)

Release of **TNF**α as a major pro-inflammatory cytokine: ELISA (or L-929 Fibroblast Reporter Assay)

In vitro - in vivo Correlation for PSP (BET surface 40-60 m²/g) Sum Index S_{vitro} (LDH, GLU, TNF, H_2O_2) vs.

Sum index in S_{vivo} (Instillation, BALF (3d): PMN, AM, protein, fibronektin)

nan@are

NR8383 vs. primary AM: Comparison of Cytokine response

NR8383 cells preferred (3R principles!):

- well established cell line (Helmke et al. 1987, 1989)
- cells phagocytose particles under serum-free conditions
- cells generate H₂O₂
- interleukine response similar to primary AM (IL-1α, IL-1β, TNFα, MIP1α, IL10, CINC1, CINC2ab, RANTES ...)

Towards assay validation with inhalation studies:

We create chemistry

Short Term Inhalation Study (STIS): General Protocol (GLP conditions)

	Study day	1	2	3	4	5	6	7	8	9 - 27	28
	Study phase	х	х	х	х	x	Ρ	Ρ	Ρ	Р	Р
Male Wistar rats	Examinations					н			L		H+L

X Generation of aerosol with a brush or swinging bed dust generator, Head-nose exposure to aerosols for 6 h/d, 5d (0.1-50 mg/m³)

P Post-exposure period

H Histology of selected organs, **Organ burden** (lung, mediastinal lymph nodes, liver, kidney, spleen and basal brain with olfactory bulb),

L Broncho-alveolar lavage fluid (BALF) Differential cell counts and biochemical parameters

🗆 = BASF

We create chemistry

Short Term Inhalation Studies (STIS) to differentiate passive and active nanomaterials (NM)

No adverse effects observed up to 10-50 mg/m³

BaSO₄, SiO₂-PEG, SiO₂-phosphate, SiO₂-amino, nano-ZrO₂, ZrO₂-TODA, ZrO₂-acrylate, SiO₂-acrylate, graphite nanoplatelets , low surface area carbon black, Pigment Orange (nano), Pigment Blue 15

Adverse effects observed at 10 mg/m³

SiO₂-unmodified, Graphene, Pigment Orange (bulk)

Adverse effects observed at approx. 0.5 mg/m³

nano-CeO₂, Al-doped nano-CeO₂, coated nano-ZnO, coated nano-TiO₂ , uncoated nano-TiO₂

NOAEC levels < 0.5 mg/m³ and progressive effects

MWCNT, quartz

Data from: Keller et al. 2014 Arch Toxicol 88:2033-59, Klein et al. Arch Toxicol 2012 86:1137 Landsiedel et al. 2014 Part Fibre Toxicol 11:16, Ma-Hock et al. 2013 Part Fibre Toxicol 10:23 "passive NM" no adverse effects >10 mg/m³

"active NM" adverse effects ≤10 mg/m³

Particle settling and uptake by NR8383 cells under serum-free conditions

Positive control

Incubation conditions:

 $3 \; x \; 10^5$ cells per well, 200 μl particle suspension

Complete uptake (ideal conditions):

22.5 – 45 - 90 -180 µg/mL \rightarrow 15 – 30 – 60 – 120 pg/cell

Comparison of in vitro (NR cells) and STIS results and assay evaluation

- Consider particle surface: BET surface x LOAEC
- Compare the value to an overload threshold: $\leq 4000 \ \mu m^2/cell (\rightarrow 6000 \ mm^2/mL)$
- Apply the "Two-out-of-four criterion" to distinguish "active" and "passive" nanomaterials

Test materials			In vitro NR8383 AM assay										STIS		
Class	Name	BET [m²/g]	LOAEC [µg/mL]					LC	DAEC [mm	NOAEC [mg/m ³]	LOAEC [mg/m ³] ^a				
			LDH	GLU	TNF-α	ROS H ₂ O ₂	LDH	GLU	TNF-α	$ROS H_2O_2$	threshold <6000	threshold <10		Ref. ^a	
Micron-sized crystalline silica	Quartz DQ12	8	90	90	45	n.s.	720	720	360	n.s.	3	0.1	1.0	[106]	
	TiO ₂ NM-105	47	90	90	90	n.s.	4230	4230	4230	n.s.	3	<2	2.0	[10]	
Active metal oxide NMs	ZnO NM-111	15	5.6	90	22.5	n.s.	84	1350	338	n.s.	3	0.5	2.5	[11]	
	nano-CeO ₂	33	90	180	45	n.s.	2970	n.s.	1485	n.s.	2	0.5	2.5	[11]	
	Al-doped CeO ₂	46	45							÷.	3	0.5	2.0	[11]	
	CeO ₂ NM-211	66	90							ŀ.	2	<0.5	5.0	[111]	
	CeO ₂ NM-212	27	90	Cooper	Statist	tics				· .	2	<0.5	5.0	[111]	
Amorphous SiO ₂ NMs	SiO ₂ .naked	200	22.	Specificity: 91 %02Sensitivity 100 %001Negative prediction rate: 95 %3Positive prediction rate: 100 % Accuracy:3									10	[11]	
	SiO ₂ .PEG	200	90										n.r.	[11]	
	SiO ₂ .amino	200	45										n.r.	[11]	
	SiO ₂ .phosphate	200	90										n.r.	[11]	
	SiO ₂ NM-200	189	22.										5	[80]	
	SiO ₂ NM-203	200	22.										5	[80]	
	AIOOH	105	90	95 % . 0 . 0 . 0 . 0 . 0									(28 ^b)	[58]	
Passive metal oxide and metal sulphate NMs	BaSO ₄	41	n.s										n.r.	[11]	
	Fe ₂ O ₃ (hematite)	98	n.s										n.r.	[79]	
	ZrO ₂ .TODA	117	45										n.r.	[11]	
	ZrO ₂ .acrylate	117	70.							97	0	≥50	n.r.	[11]	
Nanosized organic	DPP Orange N	64	n.s.	n.s.	45	n.s.	n.s.	n.s.	2880	n.s.	1	≥30	n.r.	[79]	
pigments	Pigment Blue15:1	53	90	90	n.d. ^c	n.s.	4770	4770	n.d. ^c	n.s.	2	≥30	n.r.	[79]	
Carbonaceous NM	Graphite nanoplatelets	74	n.s	45	90	n.s	n.s	3330	6660	n.s	1	≥10	n.r.	[82]	

From: Wiemann et al. 2016, J. Nanobiotechnology, 14:16

Embedding into the tiered strategy for the risk assessment of nanomaterials

Surface-treatment of SAS¹ reduced bioactivity!

2) Very similar to AEROSIL[®] R 974 which was found less bioactive than CAB-O-SIL[®] S17 in a 90 d inhalation study.

Prediction of Lacking Toxicity of Poorly Soluble Organic Pigments

Conclusions

- Macrophage responses *in vitro* (NR8383 cells) correlate with signs of acute inflammation *in vivo* (instillation and STIS).
- A panel of four in vitro parameters from NR8383 cells (LDH, GLU, TNF, H₂O₂) appears sufficient to differentiate between "active" and "passive" nanomaterials, if the specific particle surface (BET) and the 2-out-of-4 criterion is considered.
- The alveolar macrophage assay (AMA) is suggested as a screening tool in a tiered approach.
- Further validation is necessary.

sponsored by

Thanks for your attention!

SASFORREACH Consortium GbR

MH

1111111111

The influence of fetal calf serum (FCS) on cytotoxicity and subcellular distribution of particles

w/o FCS

Sipernat® 160 and Sipernat® 50

Aerosil® 380F

Protein coating of inhaled SAS happens over time inside the lung. This may mitigate adverse effects of SAS!

From: Wiemann et al. 2020, Nanomaterials(Basel)

