Carbon Black and Lung Cancer Mortality

—A Meta-regression Analysis Based on Three

Occupational Cohort Studies

Mei Yong^{1,2}

- 1. MY EpiConsulting
- 2. Johannes Gutenberg-Universität Mainz

Carbon Black

- The effects of exposure to "poorly soluble particles with low acute toxicity (PSLTs)" on human health are again the focus of research.
- In 2006, the International Agency for Research on Cancer (IARC) classified carbon black as "possibly carcinogenic to humans" (Group 2B) primarily on the basis of positive lung cancer findings in the rat.
- Evidence in human was inconsistent: increased lung cancer mortality was indicated in the UK and the German cohorts, while deficit was found in the US cohort.
- Lack of exposure-response analyses was identified to be a gap by the IARC working group (Ward 2010).
- An updated follow-up study of the US cohort was published in 2015, to address the exposure-response relationship (Dell et al, 2015).

Exposure-response relationship

- ERR is an important criterion for assessing causal relationship in epidemiological research (Hill, 1965).
- Exposure-response relationship (ERR) is a useful concept to investigate an existing trend and can be expressed as a function of increasing exposure
- For risk assessment, exposure-response relationship can be performed to project:
 - exposure scenario has not yet occurred
 - a sufficient latency period since exposure has not yet passed

Review of CB studies – external analysis

Cohort	Study	Follow- up	Study population	Cause of deaths	# of deaths	SMR	95% CI	Referent rates	Adjust
US cohort	Dell et al. 2006	1930 - 2003	Full cohort 5011	All causes	1326	0.74	0.70 – 0.78	State	no
			18 CB facilities	All malignant	330	0.83	0.74 – 0.92		
				Lung cancer	138	0.97	0.82 - 1.03		
				NMRD	120	0.99	0.83 – 1.18		
	Dell et al. 2015	1940- 2011	Full cohort 6634	All causes	1947	0.78	0.75 – 0.82	State	no
			incl. inception cohort 4882	All malignant	512	0.79	0.72 – 0.86		
				Lung cancer	184	0.77	0.67 - 0.89		
				NMRD	163	0.88	0.75 – 1.02		

Particles & Health 2021

Review of CB studies – external analysis

Cohort	Study	Follow-up	Study population	Cause of deaths	# of deaths	SMR	95% CI	Referent rates	Adjust
UK cohort	Sorahan et al. 2001	1951 - 1996	1,147 male					England and Wales	no
	2001		5 facilities	All cause	372	113	1.02 – 1.25		
				All malignant	137	1.42	1.19 – 1.68		
				Lung cancer	61	1.61	1.29 – 2.00		
				NMRD	35	1.07	0.75 - 1.49		

Review of CB studies – external analysis

Cohort	Study	Follow- up	Study population	Cause of deaths	# of deaths	SMR	95% CI	Referent rates	Adjustment
German cohort	Wellmann et al. 2006	1976 - 1998	1,522 blue collar workers					(west) German population	no
				All cause	332	1.20	1.08 – 1.34		
				Lung cancer	50	2.18	1.61 – 2.87		
				NMRD	18	1.14	0.68 - 1.80		
	Morfeld et al. 2006a		Full cohort 1,528	All cause	328	1.23	1.10 -1.37	West Germany	
			Incl. Inception cohort 1,271		328	1.17	1.05- 1.30	North-Rhine Westphalia	
					328	1.20	1.07 – 1.34	Cologne	
				Lung cancer	47	1.33	0.98 – 1.77	West Germany	Smoking, prior exposure
					47	1.27	0.93 – 1.69	North-Rhine Westphalia	Smoking, prior exposure
					47	1.20	0.88 – 1.59	Cologne	Smoking, prior exposure

Overview of external analyses of CB studies

	Study	Cause-specific SMR (95% CI)						
		All cause	All malignnant	Lung cancer	NMRD			
US cohort	Dell et al. 2006	0.74 (0.70 – 0.78)	0.83 (0.74 – 0.92) 0.97 (0.82 – 1.0		0.99 (0.83 – 1.18)			
	Dell et al. 2015*	0.78 (0.75 – 0.82)	0.79 (0.72 – 0.86)	0.77 (0.67 – 0.89)	0.88 (0.75 – 1.02)			
UK cohort	Sorahan et al. 2001	1.13 (1.02 – 1.25)	1.42 (1.19 – 1.68)	1.61 (1.29 – 2.00)	1.07 (0.75 – 1.49)			
German cohort	Wellmann et al. 2006	1.20 (1.08 – 1.34)		2.18 (1.61 – 2.87)	1.14 (0.68 – 1.80)			
	Morfeld et al. 2006a**	1.20 (1.07 – 1.34)#		1.20 (0.88 – 1.59)#				

^{*} Updated analyses of Dell et al. (2006)

^{**} Re-analyses of Wellmann et al. 2006

[#] regional referent population, with adjustment for smoking and prior exposure

Exposure in relationship with lung Ca. mortality

Particles & Health 2021

Meta regression

- Combine the data of 13 categories of cumulative exposure and the category-specific risk estimates
- Two-stages hierarchy modelling
 - ➤ To estimate the exposure—response association within a particular study
 - ➤ A log linear model for random-effects exposure—response metaregression:

```
lnRR = \beta(exposure) + \varepsilon, where \beta = the common slope associated with CB exposure across studies, \varepsilon = the random effect between the studies.
```

- RR provides a risk estimate per unit increase of cumulative exposure
- Repeated sensitivity analyses

Exposure-response relatiponship wrt. lung Ca.

Study	Estimate (SE)	P	RR (95%CI)	Adjustment
Dell et al. 2015 only	0.0028 (0.0019)	0.1395	1.0052 (0.999 – 1.006)	Attained age, decade of birth, age at hire, plant
Sorahan et al. 2001 only	0.0100 (0.0052)	0.0567	1.010 (0.997 - 1.020)	Attained age, duration of employment, employment status, year of hire, plant
Wellmann et al. 2006 only	-0.0199 (0.0069)	0.0040	0.980 (0.967 - 0.994)	Attained age, smoking
All studies combined	-0.0013 (0.0065)	0.8469	0.999 (0.986 – 1.012)	

Sensitivity analysis - cumulative exposure-response estimates

Study	Estimate (SE)	Р	RR (95%CI)	Adjustment
Dell et al. 2015 only	0.0028 (0.0019)	0.1395	1.0052 (0.999 – 1.006)	Attained age, decade of birth, age at hire, plant
Sorahan et al. 2001 only	0.0100 (0.0052)	0.0567	1.010 (0.997 - 1.020)	Attained age, duration of employment, employment status, year of hire, plant
Morfeld et al. 2006b only	-0.0094 (0.0085)	0.2675	0.9906 (0.974 - 1.007)	Attained age, date of birth, age at hire, prior exposure
All studies combined	0.0030 (0.0038)	0.4252	1.003 (0.996 – 1.010)	

Sensitivity analysis - cumulative exposure-response estimates

Study	Estimate (SE)	P	RR (95%CI)	Adjustment
Dell et al. 2015 only	0.0029 (0.0018)	0.1003	1.0029 (0.9994 – 1.0064)	Attained age, decade of birth, age at hire, plant
Sorahan et al. 2001 only	-0.0026 (0.0027)	0.3269	0.9974 (0.9921 - 1.0026)	Attained age, duration of employment, employment status, year of hire, plant
Morfeld et al. 2006b* only	-0.0099 (0.0106)	0.3502	0.9901 (0.9698 – 1.0109)	Attained age, date of birth, age at hire, prior exposure
All studies combined	-0.0001 (0.0026)	0.9754	0.9999 (0.9947 – 1.0051)	

Discussion

- Contradicting results from the external and the internal analyses from Wellmann et al. (2006).
- Lack of adjustment for smoking lead substantial to an over-estimation of SMR for lung cancer in German cohort (Morfeld et al. 2006a).
- Heterogeneity between the studies hampers summarizing SMRs.
- Other possible reasons for heterogeneity:
 - missclassification
 - exposure assessment
- Combining the results from internal analyses across the studies, no / slightly decreasing exposure-response relationship can be concluded.

Discussion

Biological plausibility

 Evidence in human might be attributed to toxicokinetic difference of handling inhaled dusts; interstitialization accumulation in humans versus alveolar accumulation in rats

Consistency

 Negative dose-response relationship was found in studies of TiO2 and lung cancer risks

Dose-response relationship

- Overall, slightly negative exposure response relationship was found
- Causal relationship between exposure to CB and lung cancer can not be concluded