Pulmonary Inflammation, Asthma, and Exhaled Nitric Oxide

Christopher H. Fanta, M.D. Partners Asthma Center Pulmonary and Critical Care Medicine Division Brigham and Women's Hospital Harvard Medical School

Conflicts of Interest

None.

Exhaled Breath Biomarkers

- Fraction of Exhaled Nitric Oxide (F_ENO)
- Exhaled Breath Condensate (EBC)
- Volatile organic compounds (VOCs)

Exhaled Breath Biomarkers

- Fraction of Exhaled Nitric Oxide (F_ENO)
- Exhaled Breath Condensate (EBC)
- Volatile organic compounds (VOCs)

Non-Invasive Assessment of Disease

Airway Diseases

- Asthma
- Sinus disease
- COPD
- Cystic fibrosis

Lung diseases

- Pulmonary infections
- Lung cancer
- Pulmonary fibrosis

Systemic diseases

- Scleroderma
- Diabetes
- Renal failure

Non-Invasive Assessment of Disease

Airway Diseases

- Asthma
- Sinus disease
- COPD
- Cystic fibrosis

Lung diseases

- Pulmonary infections
- Lung cancer
- Pulmonary fibrosis

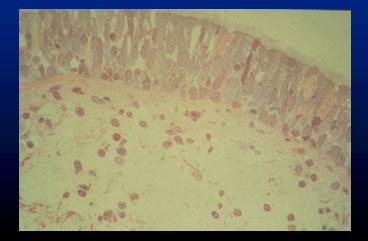
Systemic diseases

• Scleroderma

Asthma: Quintessential Airway Disease

Characterized by:

- Reversible airway narrowing;
- Bronchial hyperresponsiveness;
- Chronic airway inflammation

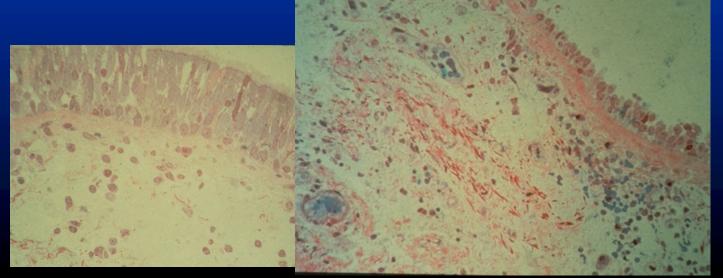


Asthma: Quintessential Airway Disease

Characterized by:

- Reversible airway narrowing;
- Bronchial hyperresponsiveness;
- Chronic airway inflammation

Normal bronchus



Asthma: Quintessential Airway Disease

Characterized by:

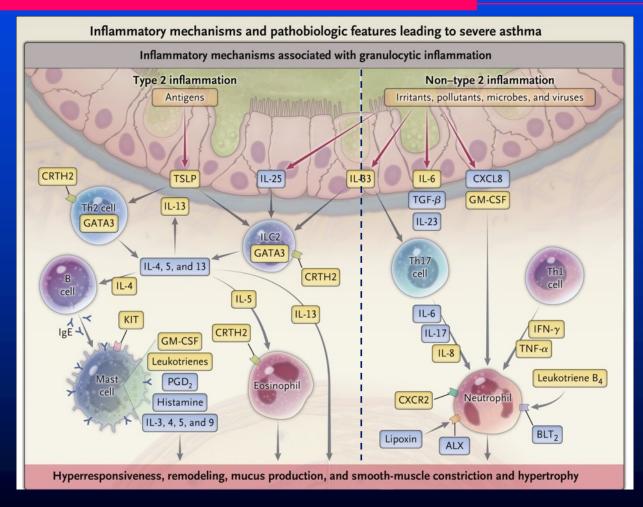
- Reversible airway narrowing;
- Bronchial hyperresponsiveness;
- Chronic airway inflammation

Asthmatic bronchus

Asthma Syndrome Is Heterogeneous

Asthma Phenotypes:

- Age of onset
- Allergic sensitivities
- Severity of regular symptoms
- Susceptibility to exacerbations
- Response to medications


Asthma Syndrome Is Heterogeneous

Asthma Endotypes:

- Eosinophilic (Type-2) inflammation
- Neutrophilic inflammation
- Pauci-granulocytic inflammation

Biochemical Pathways in Severe Asthma

Israel E, et al. NEJM 2017: 377:965-76.

Traditional Disease Markers for Diagnosis and Monitoring Asthma

- Measurement of expiratory airflow
 - Forced expiratory volume in 1 second (FEV1) or peak expiratory flow (PEF)
- Measurement of airway hyperresponsiveness
 - Bronchoprovocative challenge (e.g., methacholine, exercise, hyperventilation of cold air)

Traditional Disease Markers of Inflammation in Asthma

Markers of inflammation:

- Blood tests for allergy-related proteins (immunoglobulin E) and allergy-related cells (eosinophils)
- Bronchoscopic lavage/airway biopsy
- Sputum analysis (eosinophils)

Production of Nitric Oxide (NO)

Sources of Inducible Nitric Oxide Synthase (iNOS)

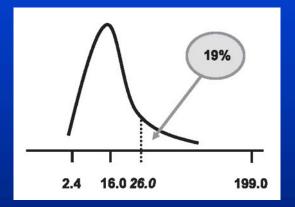
- Airway epithelial cells
 - Increased in airway inflammation
- Especially, eosinophilic airway inflammation

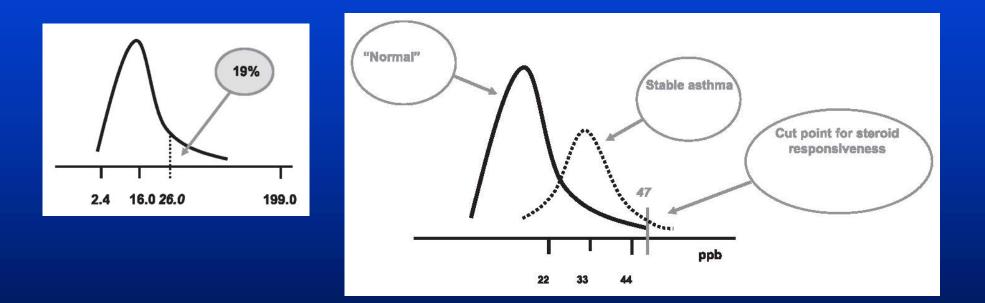
Sources of Inducible Nitric Oxide Synthase (iNOS)

- Airway epithelial cells
 - Increased in airway inflammation
- Eosinophils

Exhaled NO as a surrogate biomarker for airway eosinophilia/Th2 inflammation

NiOx Mino


- 10-second exhalation at steady pressure to maintain flow rate 50+5 ml/sec.
- Last 3 seconds of exhalation are analyzed by calibrated electrochemical sensor.


Ox mino use

(1:55-2:44)

Normal: <25 ppb (<20 in children) Indeterminate: 25 – 50 ppb (20-35 in children) High: >50 ppb (>35 in children)

Normal: <25 ppb (<20 in children) Indeterminate: 25 – 50 ppb (20-35 in children) High: >50 ppb (>35 in children)

Modifiers:Atopy (↑)Cigarette smoking (↓)Corticosteroid therapy (↓)Other: FVC maneuvers; alcohol consumption;nitrate-rich food intake; mouthwash

Significant change in FE_{NO} : $\geq 20\%$ when FENO >50 ppb10 ppb when FENO <50 ppb</td>

American Thoracic Society Statement

"a quantitative, noninvasive, simple, and safe method of measuring airway inflammation that provides a complementary tool to other ways of assessing airways disease, including asthma."

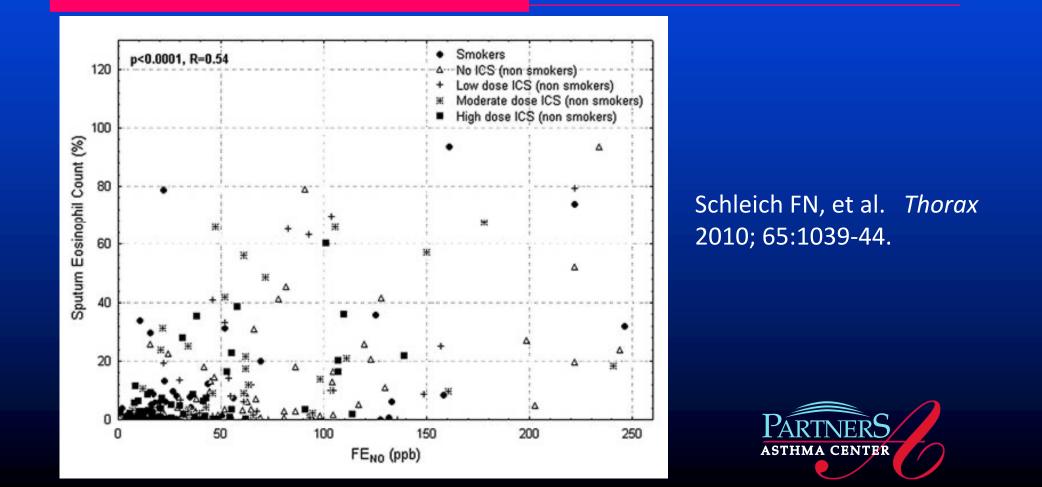
Potential Utility of Measurement of FENO

- 1. Diagnosis of asthma
- 2. Detect eosinophilic inflammation of airways
- 3. Predict steroid responsiveness in asthma
- 4. Useful for monitoring asthma activity
- 5. Assess potential medication non-adherence
- 6. Characterize asthma endotype in severe asthma

Potential Utility of Measurement of FENO

1. Diagnosis of asthma

- 2. Detect eosinophilic inflammation of airways
- 3. Predict steroid responsiveness in asthma
- 4. Useful for monitoring asthma activity
- 5. Assess potential medication non-adherence
- 6. Characterize asthma endotype in severe asthma



Correlation with Sputum Eosinophilia (>3%)

- Retrospective analysis
- 295 patients seen at asthma clinic (Liege, Belgium)
- All had confirmed asthma and both measurement of FE_{NO} and sputum induction.

Correlation with Sputum Eosinophilia (>3%)

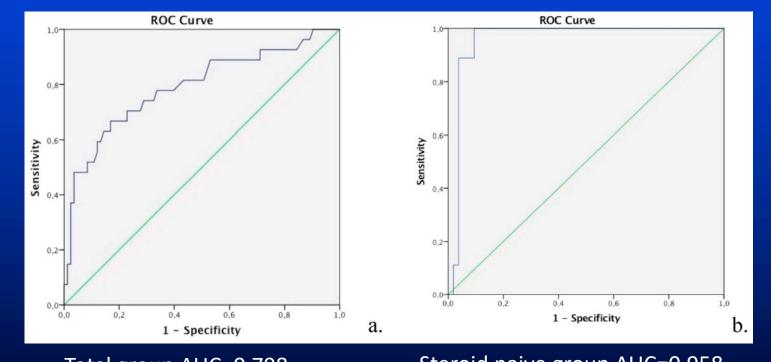
Correlation with Sputum Eosinophilia

A threshold for FE_{NO} of 42 ppb discriminates between eosinophilic and non-eosinophilic asthma with sensitivity of 63% and specificity 80%.

(p<0.0001 for logistic regression analysis)

Schleich FN, et al. *Thorax* 2010; 65:1039-44.

Validation of ATS Cut-Off Values: Correlating Sputum Eos


Prospective study of 110 asthma patients at university-based asthma center in Copenhagen.

High FE _{NO} (>50 ppb)	Low FE _{NO} (<25 ppb)
PPV = 77%	NPV = 88%

Jeppegaard M, et al. Respir Med 2018; 144:22-9.

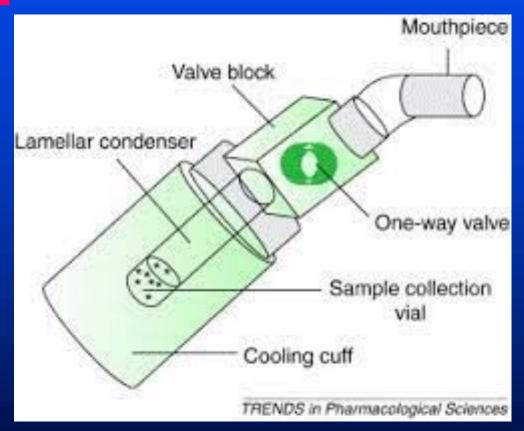
Receiver Operating Characteristic Curves

Total group AUC=0.798

Steroid naive group AUC=0.958

PARTNERS ASTHMA CENTER

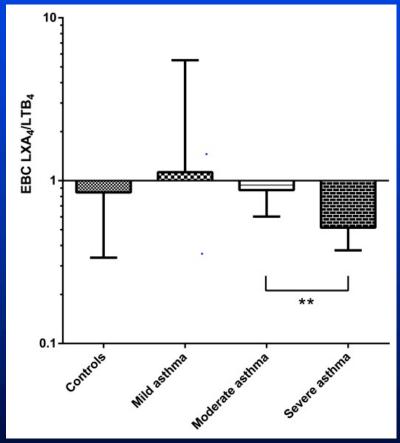
Jeppegaard M, et al. Respir Med 2018; 144:22-9.


Limitations of FE_{NO}

- Considerable overlap between normal and disease
- Influence of modifying factors (age, atopy, sinus disease, cigarette smoking, etc.)
- Dramatic suppression by inhaled corticosteroids
- Values often in a "gray zone" (20-40 ppb)

Exhaled Breath Condensate

Exhaled Breath Condensate


- Volatile and non-volatile compounds
 - Polypeptides
 - Proteins
 - Nucleic acids
 - Lipid mediators
 - Inorganic/organic molecules
 - Redox-relevant molecules
 - pH relevant molecules
 - Cytokines, chemokines

Lipid Mediators in Asthma by EBC

 pro-inflammatory leukotrienes
pro-resolving lipoxins
ratio of lipoxins:leukotrienes in severe asthma

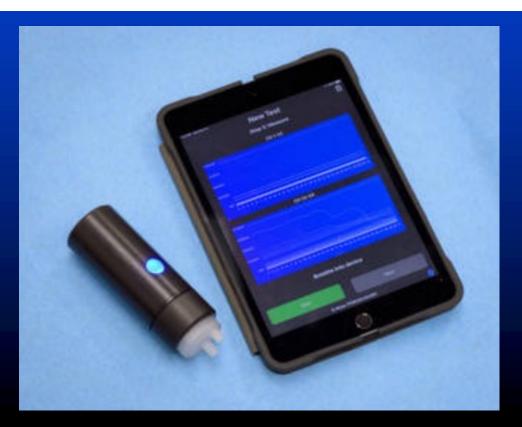
Kazani S, et al. J Allergy Clin Immunol 2013; 132:547-753.

VOCs Using Electronic Nose ("Breathomics")

- Diagnostic utility in cancer, infection (including fungal and TB), and airway diseases
- Sensor array vs. targeted molecules via gas chromatography:mass spectrometry

VOCs in Asthma

245 asthmatic subjects: Able to discriminate eosinophilic, neutrophilic, and pauci-granulocytic asthma


Eosinophilic:	Neutrophilic:
Hexane	Nonanal
2-hexanone	1-propanol
	Hexane

Schleich FN, et al. Am J Respir Crit Care Med 2019; 200:444-53.

Detection of Covid-19 Infection

NASA's E-Nose Device Advanced to "Sniff" COVID-19 from Human Breath

NASA Ames Research Center, April 7, 2021

Conclusions

- Analysis of components of exhaled breath offers a non-invasive assessment of airway and lung pathology.
- Measurement of exhaled nitric oxide concentration has proven to be a useful marker of eosinophilic airway inflammation in asthma and has been successfully commercialized.
- The science of exhaled breath analysis is in its infancy and has potential for understanding the inflammatory response to inhaled particles.

