

Microplastics and Health: A new challenge for regulators and scientists

Particles and Health 2021

Dr Stephanie Wright | Environmental Research Group & MRC Centre for Environment and Health School of Public Health | Imperial College London

Plastic to microplastic

4.9 Bt of plastic waste released to landfill or the environment (Geyer et al., 2017);

201E)

marina any iranmont 2010 / lamback at 10 mil 107 Mt antored ...solid synthetic polymeric particles of no more than 5 mm in their longest dimension and which may contain additives or other substances.' (European Commission, 2019);

Imperial College London		Source	Concentration (in numbers)	Size (in µm)	Estimated exposure (EE)	
		Seaweed (Baini et al., 2017)	22.57/sample	<500-5000	113/Nori wrap	
			1.6 µg/g PAE	30% 1000-2500	1.9/OA pill	
					0.4 PAE mg/Nori wrap	
					0.007 mg PAE/OA pill	
The ins		Salt (Yang et al., 2015)	7–681/kg	55% <200	4/day	
		0.1.02		50-4300		
	Source	Salt (Iniguez et al., 2017)	128/kg	30-350	1/day	Reference
	Source	Salt (Kosuth et al., 2018)	212/kg	10-5000	2/day	IVEIGI GIICG
		Sugar (G. Liebezeit & Liebezeit,	249/kg		23/22 tsp	
	Bottled water	2013)	175/kg	10-3100	3.7/tbsp.	ssman et al.,
		Honey (G. Liebezeit & Liebezeit, 2013; G. L. Liebezeit, E, 2015)				18
	Shellfish	La la contra de contra	5 4L 3	50 3350	01/1	slie et al 2017
	Oneiman	Indoor air (Dris et al., 2017)	5.4/m ²	50-3250	81/day	5110 Ct al., 2017
	Salt	Indoor air (Gasperi et al., 2015)		50-80% 100-500		eni and
		Outdoor air (Dris et al., 2017)	0.9/m ³	50-1650	14/day	askovic, 2018
	Air	Tap water (Kosuth et al., 2018)	9.24/L	960 average	28/day	anello et al
		Bottled water (Kosuth et al., 2018)	3.57/L	970 average	4/day	19
	Deposition	Beer (Kosuth et al., 2018)	4.05/L	990 average	2/day	atarino et al.,
	· · [Tea (Hernandez et al., 2019)	12 × 10 ⁹ /cup	8.6–29.3 average	11.6 × 10 ⁹ /day	18
	Total		3.5 × 10%/cup	(and 22-156 nm)	3.5 × 10 ⁹ /day	
	Iotai	Soil (with compost) (Blasing &	2 38-180/kg	>1-5000	<0.036/day	
		Amelung, 2018)	1200 mg/kg		<0.24/day	
*Bottl	ed water intake (worst		1000 mg kg			
**She	ellfish and salt intake b	Total (fibers per day)		Diet dependent	>50-to-billions	Zarus et al 2021
***Inh	alation intake based c	n an addit avorago minato v				

...and outs

- Some particles may pass through.
- 8 to 416 (median 20) microplastic 50-500 μm per 10 g stool (100 g avg).
- Does the size distribution accurately reflect exposure?

Schwabl et al., 2019; Wright & Kelly, 2017

Microplastic in the atmosphere

72

Wright et al. Environ Int. 2020.

Microplastic contaminates air around the world

Zhang et al., 2020

Common characteristics and trends

- **Fragments or fibres** dominate shape: sample type, geographical location, environment, analytical method.
- **PET, PE, PS, PP, PA**: depends on shape, sample type, geographical location, environment, analytical method.
- Mainly **secondary** microplastic particles, but evidence of some primary. Elevated levels in **urban** and **indoor** environments.

Occupational exposure to high levels of respirable plastic dust can cause lung disease.

Burkhart et al., 1999.

Microplastic toxicity observed in vivo

Plastic	Size	Toxic?	Reference						
Polyvinylchloride	1-250 µm	~ Limited, reversible to no observed effects	Agarwal et al., 1978, Pigott et al., 1979						
Butvery few studies, uncertain interspecies translation, 1 in last 10 years									
			1992						
Nylon (flock)	<14 µm (I), <3 µm (w)	~ toxic to no observed effects	Pimental et al., 1975; Porter et al., 1999; Warheit et al., 2003						
Polypropylene	30 µm (I), 1.6 µm (w)	 ✓, reversible at lower doses 	Hesterberg et al., 1992						

Inhaled polystyrene nanobeads exert minimal effects in healthy animals

Dongyoung Lim^{a, 1}, Jaeseong Jeong^{a, 1}, Kyung Seuk Song^b, Jae Hyuck Sung^b, Seung Min Oh^c, Jinhee Choi^a ♀ ⊠

 Subacute inhalation toxicity study Modified OECD TG412

14 days Inhalation exposure

Individual-level

- Exposure equivalent to 6.2 and 4.3 x 10⁸ p/d for M and F, respectively
 - =1.6 and 1.1 x 10⁵ cm⁻²
- No quantitative dose-response in observed endpoints

Even more recent findings...

- Amino formaldehyde: 1-5 μm 1.03 × 10⁷ particles MP in 20 μL saline every 3 d
 - Normal: ↑ infl cell; mac aggregation; ↑ TNF-a (BALF); ↑ IgG1
 - Asthmatic (HDM): exacerbated symptoms; ↑ infl cell; mac aggregation
 - (Lu et al., 2021)
- Reprotoxic effects

Amereh 2020 (0.04μm)
 An 2021 (0.5μm)
 Hou 2021a (5μm)
 Li 2021b (0.5μm)
 Xie 2020 (5μm)
 Deng 2017 (5μm)
 Deng 2017 (20μm)

Anti-Müllerian Hormone Concentration -Sperm Count -Body Weight -Testosterone Concentration -Sperm Deformity -Sperm Motility -Sperm Motility -Sperm Maturity -Luteinizing hormone Concentration -Follicle Stimulating Hormone Concentration -Sperm Viability -

Liver Index ·

If microplastics impact health, why don't we know about it already?

The size data gap

How can we detect PM10 microplastics?

Wright et al. Environ Sci Technol. 2019.

How can we detect <**PM**₁₀ microplastic?

Environmental reference

2-10 µm

Levermore et al. Analytical Chemistry. 2020.

Is microplastic a component of PM₁₀?

Microplastic (>4.7 um) = ~0.1%

- What's the relative contribution to 'particle' exposure?
- What's the relative potency of (different) microplastic particles?
- Is there a mixture effect?

Wright et al., 2019. ES&T; Levermore et al., 2020. Anal Chem.

Wright et al., unpublished - please do not share

Particle effects

Imperial College London

The microplastic mix

Imperial College London B Airway organoids

Full characterisation is needed

- Dose metrics: mass concentration, particle no. concentration, surface area, volume
- Physicochemical properties: size/shape/surface charge/composition
- Impurities/artefacts: organics, inorganics, endotoxin

Van Dijk et al., 2021.

Key knowledge gaps/holes

- Exosure analytical challenge
- Which properties drive observed effects and how they relate to environmental exposures
 - Reference material
- Which biochemical pathways are perturbed and why?
- The contribution of microplastic to particle exposures...
- ...and non-communicable disease (epidemiological studies)
- Mixture effects with other ambient contaminants.

Thank you!

Imperial College London Prof Frank Kelly Dr Ian Mudway Prof Terry Tetley Mr Joseph Levermore Dr Ana Oliete Alexander Mitchener Dr David Green Dr Anja Tremper Dr Thomas Smith (LSE) Mr Jannis Ulke

King's College London

Contact details/for more information Dr Stephanie Wright s.wright19@imperial.ac.uk https://www.imperial.ac.uk/people/s.wright19

Analysis of Microplastics in Environmental Samples by Pyrolysis/Thermal Desorption-(GC)xGC-TOFMS

by NickJaner', Janzer Wendt', Sophanis Wright', Elma Martuer', Flomas Googer "Lao Lampan: Apfiliation and Delmitige Contex, Berlin (Germang) "Opposid Collips, London (20) "Hilatholiz Zertwan, Manich (Germang)

Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure

Stephanie L. Wright¹, Todd Gouin^{2*}, Albert A. Koelmans³ and Lisa Scheuermann⁴

Detection of Microplastics in Ambient Particulate Matter Using Raman Spectral Imaging and Chemometric Analysis

Joseph M. Levermore*, Thomas E. L. Smith, Frank J. Kelly, and Stephanie L. Wright

Raman Spectral Imaging for the Detection of Inhalable Microplastics in Ambient Particulate Matter Samples

Stephanie L. Wright,*⁰ Joseph M. Levermore, and Frank J. Kelly

Atmospheric microplastic deposition in an urban environment and an evaluation of transport

S.L. Wright^{a,b,1,*}, J. Ulke^{a,1,2}, A. Font^{a,b}, K.L.A. Chan^c, F.J. Kelly^{a,b}

Plastic and Human Health: A Micro Issue?

Stephanie L. Wright**** and Frank J. Kelly*

Health Protection Research Unit in Environmental Exposures and Health at Imperial College London

Centre for Environment and Health

Images courtesy of Screen Ocean/Cover Images, unless credited otherwise